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Abstract

Background: Machine learning (ML) has become a vital part of medical imaging research. ML methods have evolved over the
years from manual seeded inputs to automatic initializations. The advancements in the field of ML have led to more intelligent
and self-reliant computer-aided diagnosis (CAD) systems, as the learning ability of ML methods has been constantly improving.
More and more automated methods are emerging with deep feature learning and representations. Recent advancements of ML
with deeper and extensive representation approaches, commonly known as deep learning (DL) approaches, have made a very
significant impact on improving the diagnostics capabilities of the CAD systems.

Objective: This review aimed to survey both traditional ML and DL literature with particular application for breast cancer
diagnosis. The review also provided a brief insight into some well-known DL networks.

Methods: In this paper, we present an overview of ML and DL techniques with particular application for breast cancer.
Specifically, we search the PubMed, Google Scholar, MEDLINE, ScienceDirect, Springer, and Web of Science databases and
retrieve the studies in DL for the past 5 years that have used multiview mammogram datasets.

Results: The analysis of traditional ML reveals the limited usage of the methods, whereas the DL methods have great potential
for implementation in clinical analysis and improve the diagnostic capability of existing CAD systems.

Conclusions: From the literature, it can be found that heterogeneous breast densities make masses more challenging to detect
and classify compared with calcifications. The traditional ML methods present confined approaches limited to either particular
density type or datasets. Although the DL methods show promising improvements in breast cancer diagnosis, there are still issues
of data scarcity and computational cost, which have been overcome to a significant extent by applying data augmentation and
improved computational power of DL algorithms.

(J Med Internet Res 2019;21(7):e14464) doi: 10.2196/14464
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Introduction

Cancer is one of the leading causes of female deaths worldwide.
It has caused more deaths than any other diseases such as
tuberculosis or malaria. The World Health Organization (WHO)
agencies for cancer research (ie, International agency for cancer
research (IARC) and American Cancer Society) report that 17.1
million new cancer cases are recorded in 2018 worldwide [1].

WHO estimates that cancer incidences might increase to 27.5
million by 2040, with an estimated 16.3 million deaths expected
as a result of cancer [1].

Breast cancer is among the 4 leading cancers in women
worldwide (ie, lung, breast and bowel [including anus], stomach,
and prostate cancers). The IARC statistics show that breast
cancer accounts for 25% of all cancer cases diagnosed in women
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worldwide. Around 53% of these cases come from developing
countries, which represent 82% of the world population [1]. It
is reported that 626,700 deaths will occur only in 2018 [1].
Breast cancer is the leading cause of cancer death among women
in developing countries and the second leading cause of cancer
death (following lung cancer) among women in developed
countries.

In breast, the cancer cells may spread to lymph nodes or even
cause damage to other parts of the body such as lungs. Breast
cancer more often starts from the malfunctioning of
milk-producing ducts (invasive ductal carcinoma). However, it
may also begin in the glandular tissues called lobules or other
cells or tissues within the breast [1]. Researchers have also found
that hormonal, lifestyle, and environmental changes also
contribute to increasing the risk of breast cancer [2,3].

To visualize the internal breast structures, a low-dose x-ray of
the breasts is performed; this procedure is known as
mammography in medical terms. It is one of the most suitable
techniques to detect breast cancer. Mammograms expose the
breast to much lower doses of radiation compared with devices
used in the past [4]. In recent years, it has proved to be one of
the most reliable tools for screening and a key method for the

early detection of breast cancer [5,6]. The mammograms are
acquired at 2 different views for each breast: craniocaudal (CC)
view and mediolateral oblique (MLO) view (Figure 1).

In this review, we present the recent work in breast cancer
detection using conventional machine learning (ML) and deep
learning (DL) techniques. The aim of this work was to provide
the reader with an introduction to breast cancer literature and
recent advancements in breast cancer diagnosis using multiview
digital mammograms (DMs). The survey aimed to highlight the
challenges in the application of DL for early detection of breast
cancer using the multiview digital mammographic data. We
present the recent studies that have addressed these challenges
and finally provide some insights and discussions on the current
open problems. This review is divided into 2 major parts. The
first part presents a brief introduction of different steps of a
conventional ML method (ie, enhancement, feature extraction,
segmentation, and classification), whereas the second part
focuses on DL techniques, with an emphasis on multiview (ie,
CC and MLO) mammographic data. The present DL literature
can be characterized for breast density discrimination, detection,
and classification of the lesion in breast cancer in the multiview
digital mammographic data. The rest of this review is organized
as follows.

Figure 1. Multiview breast mammogram of a patient. The first column presents two views of the right breast: right craniocaudal (RCC) view and right
mediolateral oblique (RMLO) view. The second column presents two views of the left breast: left craniocaudal (LCC) view and left mediolateral oblique
(LMLO) view.
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Methods

Conventional Machine Learning Pipeline
In this section, we present various steps involved in a
computer-aided diagnosis (CAD) system using the conventional
workflow. The steps involved are outlined in Figure 2 and are
discussed briefly as follows.

Breast Profiling and Preprocessing
Mammogram preprocessing is one of the primary steps in a
CAD system. In the preprocessing step, the unwanted objects
are removed from the mammograms, which include annotations,

labels, and background noises as can be seen in Figure 3. The
preprocessing helps the localization of region for abnormality
search. In mammogram preprocessing, one of the major
challenges is to accurately define the pectoral muscle (PM)
boundary from the rest of the breast region. The PMs are mostly
present in MLO views of the mammograms. The presence of
PMs in the MLO view can interrupt the automatic detection of
lesions and can increase the false positive (FP) alarms. Many
studies advocated the removal of PMs [7-15] for improving the
diagnostic accuracy of the CAD system. Thus, successful
removal of PMs is vital to avoid false detection. Moreover, it
also reduces the time complexity and improves the accuracy
apart from avoiding the intra-observation discrepancies.

Figure 2. Difference between 2 pipelines: conventional machine learning pipeline (left) and deep learning pipeline (right).

Figure 3. (a) Original mammogram image 1024×1024. (b) Preprocessing to remove annotations. (c) pectoral muscle (PM) removal by region growing.
(d) PM removal by adaptive segmentation.
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Image Enhancement Techniques
Image enhancement techniques are used to improve the
mammogram’s quality in terms of improving the contrast and
enhancing its readability. It helps the system to detect the
mammographic lesions with poor visibility and contrast by
improving it. The major goal of mammogram enhancement is
to improve the image quality on the mammograms with low
contrast. The low-contrast regions with small abnormalities are
often concealed in surrounding tissues, leading to a
misdiagnosis. The image enhancements improve the overall
quality of the images, thus making it relatively easier for the
reader and CAD systems to detect these subtle abnormalities.
The enhancements may add distortions to the anatomical
characteristics of an image or amplify the noises. Thus, only
those methods would be acceptable that maintain a similar
appearance to the original image. Recently, with the introduction
of direct digital technology in mammography, with dynamic
range, improved contrast, and signal to noise ratio, there is a
limited scope of mammogram enhancement.

The enhancement techniques are generally divided into 3
categories: spatial domain, frequency domain, and a combination
of spatial and frequency domain techniques [16]. However,
these techniques can be characterized into 4 types [17] based
on their particular usage: namely, conventional, region-based,
feature-based, and fuzzy enhancement techniques. The primary
aim of enhancements is to improve the quality of mammograms
to achieve high diagnostic performance. The conventional
methods can be adapted for local as well as global enhancement
of the mammograms. However, the conventional methods have
a tendency to enhance the noise factor as well. On the other
hand, the region-based methods are suitable for contrast
enhancements of particular regions of interest (ROIs) with
varying shapes and sizes. The region-based methods help to
enhance the anatomical details of the ROIs without any addition
of artifacts. These methods are generally well suited for
microcalcification enhancements in breasts with dense tissues.
The feature-based enhancement techniques are applied on

mammograms with calcifications as well as masses. The
multiscale transforms such as wavelets are used because of their
dilation and translation properties that are best suited for
nonstationary signals. The low frequencies are suppressed,
whereas only higher frequencies are kept by applying a
threshold. Thus, the reconstructed images only contain highest
frequencies with possible lesion regions. Finally, the fuzzy
enhancement technique uses the maximum fuzzy entropy
principle on the normalized mammograms to enhance the
contrast and suppress the noise. These techniques are effective
to enhance the mass contours and present the fine details of
mammogram features.

Mammographic Mass Segmentation Techniques
The segmented region is vital for feature extraction and detection
of abnormal tissues in the breast, and it needs to be well focused
and precise. Therefore, the segmentation is important to extract
an ROI that provides a precise measurement of breast regions
with abnormalities and normal regions. Segmentation involves
the fundamental step of separating the breast region from the
background and aims to separate the breast regions from the
other objects. It is an important step to preserve the margin
characteristics of mammograms before any further processing.

The segmentation aims to extract ROIs with possible masses,
and it may involve partitioning of the mammogram into several
nonoverlapping regions with candidate mass lesions. At the
detection stages, higher sensitivity rate and more FPs are
expected. Figure 4 illustrates the FP detection at pixel level
compared with ground truth boundary. These FPs can be
removed after the classification stage. In the literature, many
researchers have devised automatic [18-21] as well as ensemble
segmentation and classification [22-24] algorithms by combining
several techniques to reduce the FPs at the detection stage. In
general, the segmentation techniques can be characterized as
thresholding based, region based (ie, region growing and region
clustering), feature and edge based. We briefly summarize the
advantages and disadvantages of segmentation techniques in
Table 1.

Figure 4. Pixel-level illustration of true positive, false positive, and false negative compared with ground truth.
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Table 1. Summary of advantages and disadvantages of segmentation methods.

DisadvantagesAdvantagesMethods

Not suitable for segmentation of ROIsb, as GT methods
produce high false positive detections

Widely used as preprocessing step in image processing as
these methods are easy to implement

GTa

Widely used in literature as initialization step of other
algorithms, but local thresholding fails to separate the
pixels accurately into suitable regions

Works well compared with GT, sometimes used to improve
the GT results

Local thresholding

Need initialization point, that is, a seed point to begin
with and highly dependent on initial guess

Uses pixel connectivity properties to grow iteratively and
sum up the region having similar pixel properties

Region growing

Total number of clusters need to be predefined at initial
stage

No seed point required to initialize; it can directly search the
cluster regions.

Region clustering

Requires some information about object propertiesHighly suitable for detecting the object boundaries and con-
tours of the suspected ROIs

Edge detection

Need prior information about the region properties of the
objects such as size, shape, and area.

Needs ground truth and are easily implemented. Easy imple-
mentation; if the prototypes are suitably selected, it can
produce good results.

Template matching

Requires empirical evaluation to select the appropriate
wavelet transform

Do not require any prior knowledge about object propertiesMultiscale technique

Need to select scale of decompositionsEasily discriminate among the coefficients at different level
and scale of decompositions

aGT: Global thresholding.
bROI: region of interest.

Conventional Feature Extraction Techniques
In ML methods, learning the significant or most informative
features from the medical images plays a vital role, as these
features are used as discriminators in later stages for
segmentation or classification. Most of these features are
manually designed (handcrafted) based on clinicians’experience
and prior knowledge about the target domain. Thus, the ML
methods can be more problem oriented and often make it
difficult for a nonexpert to exploit the full potential of the
method. The feature extraction is the step that characterizes the
features of a specific region. The significant features are retained
for the classification step. To measure features from the ROIs,
its properties such as mass size, regular or irregular shapes,
homogeneity of boundaries, and density of tissues are utilized
[25]. It is widely known that because of the variation in
properties of normal and diseased tissues, feature space exhibits
a large and complex nature. Most features are not significant
when separately studied. However, when combined with other
features, they can represent significant information that is helpful
for the classification step. The performance of the algorithm is
affected, and the complexity of the classifiers increases when
excessive use of features is done. Thus, drawing the optimal
features from images is very crucial. A number of feature
selection techniques such as principal component analysis (PCA)
[26], linear discriminant analysis (LDA) [27], filtering

techniques such as chi-square test [28,29], and many other
feature reduction methods [30] are used to select the most
discriminative features to avoid overfitting and reduce the
redundancy in feature space. On the basis of the feature
characteristics, the feature space can be divided into 3
categories: morphological (shape or geometric) features, texture
or statistical features, and multiresolution features.

Classification Techniques
Classification is the last step to determine the lesion under
observation is normal or cancerous regions. If it is classified as
a cancerous region, further classification is done to determine
the pathology of cancer, ie, benign or malignant. The
classification step itself is heavily dependent on other
intermediate steps, especially segmentation and feature
extraction. In breast cancer classification, some of the commonly
used classifiers include support vector machine (SVM) [31-34],
artificial neural network (ANN) [10,13,21,35,36], k-nearest
neighbor (KNN) [37,38], binary decision tree [39], and simple
logistic classifier [34,40]. The performance of the classifier can
be improved using some feature selection method to remove
the redundant features and keep only the most discriminative
features. An overview of CAD system based on ML algorithms
for breast cancer diagnosis using mammographic data is
illustrated in Figure 5.
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Figure 5. An overview of mammogram processing using computer-aided diagnosis based on machine learning algorithms.

Summary of Machine Learning Methods
A substantial amount of research on breast mass,
microcalcification detection, and classification can be found in
literature [22-24,31,34,41-45]. Masses are more challenging to
detect compared with microcalcifications because the mass
features may be concealed or alike to those of normal breast
parenchyma. Thus, the detection of masses is still an open
challenge in breast cancer detection. We also note that masses
greatly vary in size [15,46], which makes it more challenging
to detect. Another major limitation of the conventional ML
studies is that mass analysis has not been done by defining some
suitable scale for the range of masses. By defining the range of
sizes, mass regions can be approached at the coarsest scale of
description. However, a more confined approach is required to
detect the boundaries of masses. Moreover, the variations in
widths, lengths, and density spiculations that are associated with
cancerous lesions and the varying scales require a more rigorous
characterization and analysis. Apart from mass detection,
architecture distortion and the detection of bilateral asymmetry
are also important research topics in mammograms [34]. The

new developments must cope and overcome with the challenges
that existing algorithms exhibit by improving the performance.
Furthermore, commercial CAD systems have achieved a
reasonable degree of effectiveness to detect masses and
calcifications. Future work on CAD systems for breast cancer
diagnosis should focus on improving the performance. Feature
extraction is one of the important steps in developing a CAD
system. A broad variety of features for the characterization of
breast cancer have been developed in the past years. Hence,
more researches seem to be necessary to measure features
robustness that can produce a high classification accuracy rate.
Selecting the optimal feature subset for supervised learning
problems requires an exhaustive search. The discriminative
power of features used in CAD systems varies. Although some
are highly significant for the discrimination of mammographic
lesions, others are redundant or even irrelevant. Hence,
automatic extraction of a subset of features from a higher
dimensional feature vector is a common module in
mammography CAD approaches.
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Deep Learning, an Overview
DL algorithms have made significant improvements in
performance compared with other traditional ML and artificial
intelligence [47]. The applications of DL have grown
tremendously in various fields such as image classification [47],
natural language processing [48], gaming [49]; and, in particular,
it has become very popular in the medical imaging community
for detection and diagnosis of diseases such as skin cancer
[50,51], brain tumor detection, and segmentation [52].

The DL architectures can be characterized into 3 categories:
unsupervised DL networks, also known as generative networks;
supervised networks or discriminative networks; and hybrid or
ensemble networks.

Convolutional neural network (CNN) is a state-of-the-art DL
technique that is comprising many stacked convolutional layers
[47]. The most common CNN discriminative architecture
contains a convolutional layer, a maximum pooling layer to
increase the field of view of the network, a rectified linear unit
(ReLU), batch normalization, a softmax layer, and fully
connected layers. The layers are aligned on top of each other
to form a deep network that can the local and spatial information
from this layer when a 2D or 3D image is presented as an input
[53].

The AlexNet [47] architecture was one of the first deep networks
for improving the ImageNet classification accuracy by a
significant stride than the existing traditional methodologies.
The architecture contained 5 convolutional layers proceeded by
3 fully connected layers. The ReLU activation function for the
nonlinear part was introduced by replacing the traditional
activation function such as Tanh or Sigmoid functions used in
neural networks. ReLU has fast convergence as compared to
sigmoid, which suffers from the vanishing gradient problem.

Later, VGG 16 architecture was proposed by visual geometry
group (VGG) [54], Oxford University. The VGG improved the
AlexNet architecture by changing the kernel size and
introduction of multiple filters. The large kernel-sized filters
are replaced (ie, 11×11 in Conv1 and 5×5 in Conv2,
respectively) by multiple 3×3 kernel-sized filters that are placed
one after another. The multiple smaller kernel filters improve
the receptive field compared with a larger size kernel, as
multiple nonlinear layers increase the depth of the network. The
increased depth enables to learn more complex features at a
lower cost. Although VGG achieved very good accuracy on
classification tasks for the ImageNet dataset, it is
computationally expensive and requires huge computational
power, both in terms of storage memory and time. Thus, making
it inefficient because of the large width of convolutional layers.

The GoogleNet [55] proposed the idea that most of the
connection in dense architecture and their activations in the
deep network are redundant or unnecessary due to correlations
between them. This makes the network computationally
expensive. Therefore, GoogleNet implied to have a most
efficient network with sparse connections between the
activations. GoogleNet introduced the inception module, which
effectively computes sparse activation in a CNN with a normal
dense construction. The network also uses 3 different

convolutions sizes (ie, 5×5, 3×3, and 1×1) to have a better
receptive field and extract details from very small levels. One
of the important salient points about the inception module is
that it also has a so-called bottleneck layer (1×1 conv.) that
helps in massive reduction of the computation requirement.
Another change that GoogleNet introduced is global average
pooling at the last convolutional layer, thus averaging the
channel values across the 2D feature map. This results in a
reduction of the total number of parameters.

With increasing network depth, the accuracy of the network is
saturated and thus degrades rapidly. This degradation is not
caused by overfitting problem, but with the addition of more
layers, the training error also increases that leads to degradation
problem. The degradation problem was solved by introducing
the residual network (ResNet) by He et al [56]. The residual
module was introduced to effectively learn the training
parameters in a deeper network. They introduced skip
connections in convolutional layers in a blockwise manner to
construct a residual module. The performance of ResNet is
better than VGG and GoogleNet [57].

Deep Learning for Breast Cancer Diagnosis
Many researchers have used DL approaches in medical image
analysis. The success of DL is largely depending on the
availability of large number of training samples to learn the
descriptive feature mappings of the images, which give very
accurate results in classification. For example, the image
classification task, the network is trained over more than 1
million images with more than 1000 class data. However, in
the case of medical images, the amount of available training
data is not that big in size. Moreover, it is also difficult to
acquire a large number of labeled images, as the annotation
itself is an expensive task and for some diseases (eg, lesions)
are scarce in the datasets [58]. In addition, annotation of these
data samples, if exist, in different classes suffers from
intraobserver variations, as the annotation is highly subjective
and relies on the expert’s knowledge and experience. To
overcome the data insufficiency challenge, many research
groups have devised different strategies: (1) using 2D patches
or 3D cubes instead of using the whole image as input [59,60],
which also reduces the model parameters and alleviates
overfitting; (2) by introducing data augmentation using some
affine transformations (translation, rotation, and flipping [61,62])
and training the network on the augmented data; (3) by
transferring learning approach using pretrained weights [63,64]
and just replacing the last layers by the new targeted class
instead; and (4) using trained models with small input sizes and
then transforming the weights in the fully connected layers into
convolutional kernels [65].

Search Strategy for Study Selection
To select the relevant recent studies on breast cancer diagnosis,
we consider the studies in the past 5 years from well-known
publishing platforms such as PubMed, Google Scholar,
MEDLINE, Science Direct, Springer, and Web of Science
databases. The search terms convolutional neural networks,
deep learning, breast cancer, mass detection, transfer learning,
and multiview are combined.
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Results

Convolutional Neural Networks for Breast Cancer
Diagnosis
In this section, we first present the methods that used breast
density estimation methods as a tool for early diagnosis. Second,
the methods used transfer learning and image features
classification of suspected lesions into mass and normal class.
Finally, we present the segmentation methods using semantic
features for localization of masses and classifying the pathology.

Convolutional Neural Network for Breast Density
Estimation
Mammographic density is an important indicator of early breast
cancer detection. In the United States, more than 30 states have
agreed to use breast density as an earlier risk marker for cancer
screening programmes [66]. The qualitative assessment is highly
subjective, and there are wide variations in scoring results
among the radiologists [67]. Recent studies also reveal that
commercial software to assess the breast score tends to give
mixed results by either over or under reporting when compared
with assessment by radiologists [68,69]. The DL algorithms for
density assessment can significantly reduce the burden of
manual scoring for the radiologist and improve the performance
for risk assessment [66].

One such attempt has been made by Mohamed et al [70] using
CNN to classify the DMs based on breast densities. The Breast
Imaging Reporting and Data System (BI-RADS) characterizes
the densities into 4 classes. The discrimination of this breast
densities acts as a risk marker for breast cancer, and radiologist
can visually access the results. The study is focused on
distinguishing the 2 difficult categories: scattered dense and
heterogeneous dense breast tissues. Their method showed
promising results for classification.

In another study, Ahn et al [71] presented a CNN-based
approach for breast density estimation. The CNN was trained
to learn image features from the image patches extracted from
the whole mammograms and classify them as fatty and dense
class tissues. The local and global statistical features were used
to train the CNN. Wu et al [72] presented the application of
deep neural network (DNN) for classification of breast densities
in DMs. The study comprised 20,000 screening mammograms
labeled as 4 class breast densities (ie, fatty, fibro-glandular
dense, heterogeneously dense, and extremely dense). A
scratch-based CNN with dense convolutional layers was used
to discriminate the breast densities in the multiview data.

In a similar study, Xu et al [73] classified the breast density
estimation method using residual CNN. The method worked
efficiently for both single and multiview images (ie, CC and
MLO). Their study aimed to use the residual CNN to
discriminate the BI-RADS densities into 4 categories. The
residual CNN consisted of 70 layers with 7 residual learning
blocks. In addition, 2 other networks with 36 and 48 weighted
layers but less residual blocks were also trained to compare the
performance. The ResNets could minimize the cross-entropy
loss to maximize classification accuracy. Their results showed
that with increased residual layer, the classification accuracies
improved. However, the computational cost was increased.

Kallenberg et al [74] proposed an unsupervised DL technique
to classify the breast density and risk score in the segmented
regions. The method uses conventional sparse autoencoder
(CSAE) for learning the features. For mammographic density
score, 3 class labels were used: PMs, fatty breast tissues, and
dense breast tissues. For the mammographic texture score, 2
classes were considered (ie, cancer and normal patches). This
score was used as a threshold to segment that tissue from the
breast. Dice score showed the goodness of segmented versus
the ground truth. The CSAE model was trained and tested for
3 different datasets, and the results showed a positive
relationship with the scores obtained manually by experts.

Ionescu et al [75] proposed a CNN-based density estimation
method to assist the radiologist in risk scoring. The CNN is
trained to assess the visual analog score from unseen images.
The method showed a strong correlation and match concordance
indices results when compared with 2 independent readers in a
clinical environment.

Geras et al [76] in their study used deep convolutional neural
network for prediction of breast densities in multiview data.
The method predicted breast density and classified into 3 types:
BI-RADS0, BI-RADS1, and BI-RADS2. Moreover, it also
classified the abnormalities from the ROIs extracted from these
images into benign and malignant. The study also investigated
the impact of training size and image size on prediction of
accuracy. It was concluded that higher number of training
samples improve the prediction accuracy during testing phase.
Moreover, rescaling the image size did not have much effect
on prediction accuracy of the method. The results show good
agreement with manual scores done by expert radiologists.

Summary of the aforementioned methods is presented in Table
2 along with performance metrics for each method and the
datasets used in these studies.
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Table 2. Summary of convolutional neural network–based methods for breast density estimation.

Code availabilityPerformance metric/s
(value/s)

TaskDataset/numberMethodAuthor

—dAUCc (0.9882)Breast density estimationPrivate, University of

Pittsburgh/200,00 DMb

(multiview)

CNNa (AlexNet; transfer
learning)

Mohamed et al [70]

—Correlation coefficient
(0.96)

Breast density estimationPrivate, Seoul University
Hospital/397 DM (multi-
view)

CNN (transfer learning)Ahn et al [71]

—Accuracy (92.63%)Breast density estimationPublic, INbreast
dataset/410 DM (multi-
view)

CNN (scratch based)Xu et al [73]

[77]Mean AUC (0.934)Breast density estimationPrivate, New York Uni-
versity School of
Medicine/201,179 cases
(multiview)

CNN (transfer learning)Wu et al [72]

—Mammographic tex-
ture (0.91) and AUC
(0.61)

Breast density estimation
and risk scoring

Private, Dutch Breast
Cancer Screening Pro-
gram and Mayo Mam-
mography, Minneso-
ta/493+668 images (mul-
tiview)

Conventional sparse autoen-
coder, ie, CNN+stacked au-
toencoder

Kallenberg et al [74]

—Average match concor-
dance index of (0.6)

Breast density estimation
and risk scoring

Private dataset/67,520
DM (multiview)

CNNIonescu et al [75]

—Mean AUC (0.735)Breast density estimation
and risk score

Private, New York Uni-
versity/886,000 image
(multiview)

Multiview deep neural net-
work

Geras et al [76]

aCNN: convolutional neural network.
bDM: digital mammogram.
cAUC: area under the curve.
dNot available.

Convolutional Neural Network for Breast Mass
Detection
The automatic detection of masses at an early stage in DMs is
still a hot topic of research. DL has significantly overcome the
shortcomings of conventional methods by learning the object
features. The learning curves of the DL methods have enabled
to highlight the most relevant ROIs in DMs. In this section, we
present the recent CNN-based methods for the detection of
masses in mammograms using transfer learning techniques and
scratch-based end-to-end training.

To improve the diagnostic accuracy of the breast CAD system,
Dhungel et al [78] introduced a CAD system with minimal user
intervention for breast mass detection, segmentation, and
classification of the masses. The mass detection is done by
cascade DL and random forest model for possible suspected
regions that are refined by Bayesian optimization technique.
The deep classifier is pretrained with regression analysis and
handcrafted features, and the network in fine-tuned bases of
ground truths for breast mass classification data, in particular,
INbreast dataset, was used for experimentation. Although the
method achieved significant results, one of the limitations of
this method is that it requires fine-tuning at 2 stages. In addition,
it was tested on limited images.

In another study, Dhungel et al [79] proposed a hybrid method
for mass segmentation. The proposed conditional random field
(CRF) model comprised several potential functions and a DL
module for segmentation of masses in mammographic images.
The method used tree reweighted (TRW) belief propagation
method as a learning mechanism to reduce the lesion
segmentation errors and provide optimal results. The study was
performed on 2 multiview datasets (ie, INbreast and Digital
Database for Screening Mammography [DDSM] datasets). Their
results demonstrated that the DL module could improve the
classification accuracies when combined with TRW.

Zhu et al [80] proposed a deep structural network with
end-to-end learning for the segmentation of masses in DMs.
The multistage deep network used a fully convolutional network
(FCN) to model a potential function combined with a CRF to
perform structured learning. FCN+CRF was used to obtain the
empirical estimation of ROIs using the position prior
information. To improve the predicted mass estimates, an
adversarial training was introduced, which helped to eliminate
the overfitting of mass regions with a smaller size in the
mammogram dataset. The proposed multistage end-to-end
network was evaluated on publicly available datasets (ie,
INbreast and DDSM). The results demonstrate the effectiveness
of that method.
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In another study, Wang et al [81] presented a semiautomated
early detection approach using DL to discriminate the
microcalcifications and masses in breast cancer dataset. The
method aimed to detect the microcalcifications that can be used
as an indicator of early breast cancer [82,83]. The DL
architecture consisted of stacked autoencoders (SAE) that stack
multiple autoencoders, hierarchically. The deep SAE model
used layer-wise greedy search training to extract the low-level
semantic features of microcalcifications. The method had 2
scenarios: (1) having microcalcification and (2)
microcalcifications and masses together to train and test the
SAE model. Their method achieved good discriminative
accuracy for identifying calcifications using SVM classifier.

Riddli et al [84] used transfer learning to implement the Faster
R-CNN model for the detection of mammographic lesions and
classify these lesions into benign and malignant pathology as
can be seen in Figure 6 (adapted from [84]). The region proposal
network in the Faster R-CNN generated possible suspected
regions, which were refined by fine-tuning the hyperparameters.
The method achieved significant classification results on the
public INbreast database. However, one of the major limitations
of this study is that it was tested on a small-scale pixel-level
annotated data for detection, whereas the classification task was
evaluated on a larger screening dataset.

Singh et al [85] presented a conditional generative adversarial
network (cGAN) to segment mammographic masses from a
ROI. The generative model learns the lesion representations to
create binary masks. Although the adversarial network learns
features that discriminate the real masses from the generated
binary masks, the key advantage of their proposed cGAN is that
it can work well for small sample dataset. The results of their
method showed high similarity coefficient value and intersection
over union of predicted masses with ground truths. Moreover,
the method also classified the detected masses into 4 types (ie,
irregular, lobular, oval, and round using CNN) as shown in
Figure 7 (adapted from [85]).

Some researchers used image features for lesion detection and
classification. One such study by Agarwal and Carson [86]
predicted the semantic features such as the type of lesion and
pathology in mammograms using the deep CNN. The motivation
of the study was to propose a method that could automatically
detect lesion and its pathology (ie, calcification or mass either
benign or malignant). A scratch-based CNN was trained on
DDSM dataset that contained mass as well as calcification cases.
The method showed significant results in recognizing the
semantic characteristics that can assist the radiologists in clinical
decision support task.

Gao et al [87] presented a shallow-deep CNN (SD-CNN) for
lesion detection and classification for contrast-enhanced DMs
(CEDM). A 4-layered shallow-deep CNN was used to extract
the visualization mappings of the convolutional layer in the

CEDM images and combine them with low-energy (LE) images.
This virtual enhancement improved the quality of LE images.
ResNet was applied to these virtual combined images to extract
the features to classify benign and normal cases. Using the
SD-CNN on the CEDM images resulted in a significant
improvement in classification accuracy compared with DMs.

Hagos et al [88] presented a multiview CNN to detect breast
masses in symmetrical images. The method used CNN
architecture with multiple patches as input to learn the
symmetrical differences in the masses. Using the gradient
orientation features and local lines on the images, the likelihood
of pixels was used to determine the patch as mass or nonmass.
They used the AUC and competition performance metric as
performance measures for the proposed method against the
baseline nonsymmetrical methods.

Later, Tuwen et al [89] proposed a multiview breast mass
detection system based on DNN. The 2-step method first
detected the suspicious regions in multiview data and then
reduced FP through neural learning and affirmed the mass
regions. The second major module consists of using transfer
learning to train images with Fast R-CNN and mask R-CNN,
with 3 different variants of ResNet (ie, ResNet-101,
ResNeXt-101, and ResNeXt-152) as backend. The 3 networks
were trained on full images to capture enough context
information to discriminate soft lesion tissues. Data
augmentation was also applied to enrich the dataset.

Jung et al [90] proposed a single-stage masses detection model
using the RetinaNet model. RetinaNet is a 1-stage object
detection method that can overcome the class imbalance problem
and perform better than 2-stage methods. The focal loss function
of the model allowed the RetinaNet to focus on the complex
sample and detect objects. The mammogram RetinaNet was
tested on 2 DM datasets, that is, INbreast and an in-house dataset
GURO. Moreover, data augmentation was also used to enrich
the database. Using the transfer learning approach, the mass
patches from each image were trained using random weight
initialization and a different combination. With 6 different
experimental settings, the RetinaNet achieved significant
detection accuracy compared with other state-of-the-art methods.

Shen et al [91] presented a deep architecture with end-to-end
learning to detect and classify the mass regions in the whole
digital breast image. The method was trained on the whole
mammogram image by using a patch classifier to initiate weights
of full image in an end-to-end fashion. The patch classifier uses
existing VGG and ResNet architecture for classification.
Different combinations of patch sets and hyperparameters were
trained to find the optimal combination on whole breast images
from the DDSM and INbreast datasets.

We summarize the lesion detection and classification methods
in details in Table 3 and illustrate the datasets used, tasks,
performance metrics, and code availability.
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Figure 6. Sample results from the study by Ribli et al for mass detection and classification.

Figure 7. An overview of conditional generative adversarial network adapted from the study by Singh et al for mass segmentation and shape classification.
CNN: convolutional neural network.
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Table 3. Summary of convolutional neural network–based methods for breast mass detection.

Code availabilityPerformance metric/s
(value/s)

TaskDataset/numberMethodAuthor

—bAccuracy (0.9) and
sensitivity (0.98)

Mass detection, classifica-
tion of benign, and malig-
nant

Public, INbreast
dataset/410 images (mul-
tiview)

Hybrid CNNa+level setDhungel et al [78]

—Dice score (0.89)Lesion detection and
segmentation

Public, INbreast and

DDSMd/116 and 158 im-
ages (multiview)

CRFc+CNNDhungel et al [79]

[92]Dice score (0.97)Lesion segmentationPublic, INbreast and
DDSM/116 and 158 im-
ages (multiview)

Fully convolutional
network+ CRF

Zhu et al [80]

—Accuracy (0.87)Detection and classifica-
tion of calcifications and
masses

Private, Sun Yat-Sen
University/1000 Digital
mammogram

Stacked autoencoder
(transfer learning)

Wang et al [81]

Semmelweis
dataset: [93];
Code: [94]

AUCe (0.95)Detection and classifica-
tion

Public, DDSM (2620),
INbreast (115), and pri-
vate dataset by Semmel-
weis University Bu-
dapest/847 images

Faster R-CNN (transfer
learning)

Riddli et al [84]

—Dice score (0.94) and
Jaccard Index (0.89)

Lesion segmentation and
shape classification

Public and private,
DDSM and Reus Hospi-
tal Spain
dataset/567+194 images

Conditional generative
adversarial network and
CNN

Singh et al [85]

—Accuracy (0.90)Classification of mass
and calcifications

Public, DDSM/8750 im-
ages (multiview)

CNN (scratch based)Agarwal and Carson [86]

—Accuracy (0.9) and
AUC (0.92)

Lesion detection and
classification

Private, Mayo Clinic
Arizona (49 subjects) and
public, INbreast dataset
(89 subjects) (multiview)

Shallow-deep convolu-
tional neural network,
ie, 4 layers
CNN+ResNet

Gao et al [87]

—AUC (0.93) and CPM
(0.733)

Lesion detection and
classification

Private (General Electric,
Hologic, Siemens)
dataset/28,294 im-
ages/(multiview)

Multi-input CNNHagos et al [88]

—Sensitivity (0.97) with

3.56 FPf per image

Lesion detection and
classification

Private (General Electric,
Hologic, Siemens)
dataset/23,405 images
(multiview)

Fast R-CNN and Mask
R-CNN with ResNet
variants as backbone

Tuwen et al [89]

[95]Accuracy (0.98) with
1.3 FP per image

Mass detection and classi-
fication

Public and private, IN-
breast and GURO dataset
by Korea University
Guro Hospital/410+222
images (multiview)

RetinaNet modelJung et al [90]

[96]AUC (0.96)Classification of massesPublic, DDSM and IN-
breast/2584 +410 (multi-
view)

CNN end-to-end (trans-
fer learning through vi-
sual geometry group 16
and ResNet)

Shen et al [91]

aCNN: convolutional neural network.
bNot available.
cCRF: conditional random field.
dDDSM: Digital Database for Screening Mammography.
eAUC: area under the curve.
fFP: false positive.

Convolutional Neural Network features for Mass
Classification
DL algorithms have shown significant improvements in breast
cancer detection and classification problem over the past decade.

The deep contextual and texture features allow the classifiers
to discriminate between normal and abnormal lesions with
varying shapes, size, and orientations. This not only improved
the diagnostic capabilities of CAD system but also provided
robust solutions for clinical practices.
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Levy and Jain [97] demonstrated the usefulness of DL as a
classification tool to discriminate the benign and malignant
cancerous regions. The authors used a transfer learning approach
to implement 2 architectures: AlexNet and GoogleNet. Data
augmentation is used to increase the number of samples and
alleviate overfitting issues. The results showed the significance
of DL features in the classification of 2 classes.

Recently, Samala et al [98] presented mass classification method
for digital breast tomosynthesis (DBT) using multistage
fine-tuned CNN. The method used multistage transfer learning
approach using different layer variation and selecting the optimal
combination. Initially, the CNN tuned on ImageNet dataset was
directly implemented on DBT data, and results were recorded
in the multistage CNN that was fine-tuned on DBT dataset. The
classification layers of CNN were used with different freeze
pattern to extract the best combination that produces the highest
accuracy. A total of 6 different combinations of transfer
networks with varying freeze pattern for convolutional layers
were tested. The multistage transfer learning significantly
improved the results with least variations compared with
single-stage learning.

Jadoon et al [99] presented a hybrid methodology for breast
cancer classification by combining CNN with wavelet and
curvelet transform. This model targeted a 3-class classification
study (ie, normal, malignant, and benign cases). In this study,
2 methods, namely, CNN-discrete wavelet (CNN-DW) and
CNN-curvelet transform (CNN-CT) were used. Features from
wavelet and curvelet transform were fused with features
obtained from the CNN. Data augmentation was used to enrich
the dataset and avoid overfitting of features at the classification
stage. Features from CNN-DW and CNN-CT were extracted at
4-level sub-band decompositions separately using the dense
scale-invariant features at each sub-band level. The obtained
features were presented as input to train a CNN with SoftMax
and SVM layer for the classification of normal, benign, and
malignant cases.

In a similar study, Huynh et al [100] also used transfer learning
and CNN as tools to classify the tumors in breast cancer. The
authors proposed an ensemble method that used both CNN and
handcrafted features (eg, statistical and morphological features).
The features from each method were combined to obtain the
ensemble feature matrix. SVM classifier was used with 5-fold
cross-validations. Performance of individual methods was
compared with the ensemble method using 219 breast lesions.
Their results showed that the ensemble could produce better
results compared with fine-tuned CNN and analytical feature
extractor.

Domingues and Cardoso [101] used an autoencoder to classify
the mass versus not mass in the INbreast dataset. The classifier
architecture included 1025-500-500-2000-2 layers with the same
number of layers for the decoder as well. Except for the last 2
linear layers, all other layers were logistic. The method produced
significant results. Moreover, it was also observed that
increasing the depth of the network by adding more layers can
also improve the detection and classification rates. The authors

tested the performance of DL method against 5 classifiers (ie,
KNN, decision trees, LDA, Naive Bayes, and SVM).

Wu et al [102] presented a DL approach to address the class
imbalance and limited data issues for breast cancer classification.
The approach used the infilling approach to generate synthetic
mammogram patches using cGAN network. In the first step,
the multiscale generator was trained to create synthetic patches
in the target image using GAN. The generator used a cascading
refinement to generate the multiscale features to ensure stability
at high resolution. Figure 8 shows the synthetic images
generated by cGAN. The cGAN was restricted to infill only
lesion either mass or calcifications. The quality of generated
images was experimentally evaluated by training a ResNet-50
classifier. The classification performance of cGAN augmented,
and traditional augmentation methods were also compared. The
results showed that synthetic augmentation improves
classification.

Sarah et al [103] addressed the issue of reducing the recall rates
in breast cancer diagnosis. The higher number of FP results in
higher recalls, which leads to unnecessary biopsies and increased
cost for the patients. In this study, a DL method to reduce the
recall rates was proposed. A deep CNN, namely, AlexNet, was
implemented. A total of 6 different scenarios of mammogram
classification were investigated. CNN was able to discriminate
and classify these 6 categories very efficiently. Moreover, it
could also be inferred that some features in recalled benign
images classify them reexamined and to be recalled instead of
classifying them as negative (normal) cases.

Lately, Wang et al [104] presented a hybrid DL method for
multiview breast mass diagnosis. The framework exploited the
contextual information from the multiview data (ie, CC and
MLO) using CNN features and attention mechanism. The
proposed multiview DNN aimed to help medical experts for
the classification of breast cancer lesion. The method comprised
4 steps, and mass cropping and extraction of clinical features
were done from the multiview patches. The recurrent neural
network, in particular, long short-term memory, was used to
extract the label co-occurrence dependency of multiview
information for the classification of mass regions into benign
and malignant cases using the clinical and CNN features as
input.

In another study, Shams et al [105] proposed a GAN-based
mammogram classification method—Deep GeneRAtive
Multitask (DiaGRAM) network to deal with data scarcity and
limited availability of annotated data. The DiaGRAM effectively
uses an end-to-end multitask learning to improve diagnostic
performance on limited number of datasets.

Gastitouni et al [106] presented an ensemble method for breast
pectoral parenchymal classification. The texture feature maps
extracted from lattice-based techniques are fed as input
separately to a multichannel CNN. The meta-features from the
CNN predicted the risk score associated with breast parenchyma.
The hybrid method showed better performance compared with
individual texture features and CNN, respectively.
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Figure 8. Sample results from the study by Wu et al for synthetic generation of data using conditional generative adversarial network. GAN: generative
adversarial network.

Dhungel et al [107] introduced a multiview ensemble deep
ResNet (mResNet) for classification of malignant and benign
tumors. Their ensemble network comprised deep ResNet capable
to tackle 6 input images, with different views, that is, CC and
MLO. The mResNet can automatically produce binary maps of
the lesions. The final output of the mResNet are concatenated

to obtain a fully connected layer that can classify the lesions
into malignant or benign class.

Generally, DL methods have significantly improved the
performance of breast cancer detection, classification, and
segmentation. We summarize these methods in details in Table
4 and illustrate the datasets used, tasks, performance metrics,
and code availability.
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Table 4. Summary of convolutional neural network–based methods for breast mass classification.

Code availabilityPerformance metric/s
(value/s)

TaskDataset/numberMethodAuthor

—bAccuracy (0.924),
precision (0.924), and
recall (0.934)

Breast mass classificationPublic, DDSMa

dataset/1820 images
(multiview)

AlexNet and GoogleNet
(transfer learning)

Levy and Jain [97]

[108]AUCe (0.91)Classification perfor-
mance on varying sample
sizes

Private+public, Universi-
ty of Michigan and

DDSM/4039 ROIsd

(multiview)

Multistage fine-tuned

CNNc (transfer learning)

Samala et al [98]

—Accuracy (81.83 and
83.74) and receiver
operating characteris-
tic curve (0.831 and
0.836) for both meth-
ods

ClassificationPublic, image retrieval in
medical applications
dataset/2796 ROI patches

CNN- Discrete wavelet
and CNN-curvelet trans-
form

Jadoon et al [99]

—AUC (0.86)Classification of benign
and malignant tumor

Private, University of
Chicago/219 images
(multiview)

CNN (transfer learning)Huynh et al [100]

[109]Accuracy (0.99)Classification of mass vs
normal

Public, INbreast/116
ROIs

AutoencoderDomingues and Car-
doso [101]

[110]AUC (0.896)Detection and classifica-
tion of benign and malig-
nant calcifications and
masses

Public, DDSM
dataset/10,480 images
(multiview)

GANf and ResNet50Wu et al [102]

—AUC (0.91)ClassificationPublic, Full-field digital
mammography and
DDSM/14,860 images
(multiview)

CNN (transfer learning)Sarah et al [103]

—AUC (0.89)Classification of breast
masses using contextual
information

Public, Breast Cancer
Digital Repository (BC-
DR-F03)/763 images
(multiview)

CNN and long short-term
memory

Wang et al [104]

—AUC (0.925)ClassificationPublic, INbreast and
DDSM (multiview)

CNN and GANShams et al [105]

—AUC (0.9)ClassificationPrivate/106 cases (medio-
lateral oblique view only)

Texture feature+CNNGastounioti et al [106]

—AUC (0.8)ClassificationPublic, INbreast (multi-
view)

Multi-ResNetDhungel et al [107]

aDDSM: Digital Database for Screening Mammography.
bNot available.
cCNN: convolutional neural network.
dROIs: region of interest.
eAUC: area under the curve.
fGAN: generative adversarial network.

Discussion

Principal Findings
From Tables 2, 3, and 4, it can be noted that significant works
have been done on breast cancer diagnosis. The review of breast
diagnosis methods shows that DL has helped to improve the
diagnostic performance of the breast CAD system, but still
challenges remain for clinical applicability of such methods,
and more research is needed. The presented literature aims to
help in building a CAD system that is robust, computationally
efficient to assist the clinicians in the diagnosis of breast cancer

at early stages. One main problem related to mammograms is
the heterogeneity of breast tissues; that is, the images acquired
at CC and MLO view may not show with different densities.
Some researchers use breast density estimation scores as the
initial biomarker for the presence of cancer. However, the
analysis shows that these methods can be confined to a particular
type of breast density and cannot be generalized for the whole
population. Others use DL in a hybrid approach and a semi
supervised manner to extract significant semantic and contextual
information to detect and classify the breast lesions.
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On the other hand, many attempts have been made to reduce
human intervention and produce fully automatic CAD system,
which is a very challenging task. In fact, all methods in literature
require annotated images (ground truth) to validate their findings
during the training and testing stages. Thus, acquisition of
labeled mammograms with image-level and pixel-level
annotations is one of the obstacles in designing robust DL
methods. The main issue is not only the availability of data but
also annotations by expert radiologist, which is time consuming,
subjective, and expensive.

It is noted from the literature that the automated DL method
requires extensive experimentation, computational power, and
preprocessing of data, which make it inefficient to be used in
real time. Moreover, finding the optimal parameters in DL
networks is also one of the major challenges in building a CAD
system for clinical use. However, this issue can be resolved if
sufficient training is provided to clinicians, and CAD systems
are made more user friendly. It is also noted that the
semisupervised approaches have shown good performance on
the public and private datasets for breast cancer diagnosis.

From the analysis of methods mentioned in Tables 2, 3, and 4,
it can be noted that most methods mentioned previously adapt
the augmentation strategies to enrich the dataset. All these
techniques only use geometric transformations to create rotated
and scale version of existing samples without adding any
morphological variations in the lesions. Thus, enrichment of
data with more samples is only limited to affine transformations
and cannot fully resolve the overfitting problem.

Developing DL models that can learn from limited data is still
an open research area not only in breast cancer diagnosis but
also for other medical image analysis applications. Moreover,
developing data augmentation techniques that can create
morphological variations in augmented samples, while also
preserving the lesion characteristic, are needed. One of the
solutions to address these problems is to explore the capabilities

of GANs as successfully demonstrated in studies by Singh et
al [85] and Wu et al [102]. Techniques such as these will not
only tackle the insufficiency issue of data but will also provide
a viable solution to class imbalance problem, which is also an
important research area.

Apart from the development of automatic DL techniques, there
are other associated challenges to the medical imaging research
community. First, it is very challenging to secure funding for
construction of a medical dataset. Also, finding an expert for
annotation and the cost of annotation itself is very high. Second,
privacy and copyright issues make the medical image difficult
to share compared with natural images datasets. Finally, because
of the complex anatomy of human organs, a variety of dataset
is required using different imaging modalities. Despite these
challenges, there has been a significant increase in the number
of public datasets. Organizing a grand challenge is one of the
good practices devised to share and enrich the datasets. The
participants are provided with a certain number of tasks on a
particular dataset, and the technique with best results is
announced as a winner. Moreover, different research centers
join hands in research collaborations as well as common data
sharing platforms.

Conclusions
From the aforementioned discussions, we can see that both
supervised and unsupervised DL methods are used by the image
analysis community, but the majority of the work uses the semi
supervised approach. The presented literature aims to help in
building a CAD system that is robust and computationally
efficient to assist the clinicians in the diagnosis of breast cancer
at early stages. As DL requires a sufficient amount of annotated
data for training, most of the researchers use a combination of
public and private data followed by data augmentation
techniques to overcome the data scarcity issue. These approaches
have provided a feasible solution to the problem of scarcity of
data and overfitting.
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CEDM: contrast-enhanced digital mammograms
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CNN: convolutional neural network
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CT: curvelet transform
DBT: digital breast tomosynthesis
DiaGRAM: Deep Generative Multitask
DL: deep learning
DM: digital mammogram
DW: discrete wavelet
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MLO: mediolateral oblique
PM: pectoral muscle
ReLU: rectified linear unit
ResNet: residual network
ROI: region of interest
SAE: stacked autoencoder
SD-CNN: shallow-deep convolutional neural network
SVM: support vector machine
TRW: tree reweighted
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